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lsPTR.CT 

Hard limiting before pulse compression or correlation processing is a common approach 
to the CFAR (constant false alarm rate) problem, and it offers a good and simple solution in a 
single-target or scarce-target environment. With the advent of radars with a large time- 
bandwidth product the possibility arises that expanded radar returns due to multiple targets 
of interest may overlap very largely or entirely but still may be sufficiently separated to be 
resolved after receiver processing. In this case the compressed pulses cannot attain full 
amplitude at the processor output even if the signal-to-noise ratio at the input is very high; 
this phenomenon is known as capture and small signal suppression. The purpose of this re- 
port is to exhibit that, in addition to compressed target responses of reduced magnitudes, 
false targets may be generated with apparent amplitudes of the same order or exceeding those 
of legitimate targets. Spurious target generation in the case of chirp radar has been known 
for some time. The theory has been extended to maximum-length linear shift-register codes 
which are used as modulation functions of pulse-compression and phase-coded CW radars. It 
is found that a single pair of radar returns coded in this manner is subject to capture only ant 
not to false target generation. Surprisingly, however, the addition of a third expanded signal 
produces a spurious response. This generation of a false target should be taken in account 
when the dynamic range of future phase-coded radars using linear shift-register codes is 
specified, in particular if the radar is designed for automatic track and raid-size determina- 
tion. 
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Genersl formulas were derived to predict the effects of capture and false target gener- 
ation as a function of the signal energy distribution and relative phasing before entering the 
limiting device. The formulas were evaluated numerically, with the results being presented 
in the form of computer-generated plots. 
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ABSTRACT 

Hard limiting before pulse compression or correlation processing is a 
common approach to the CFAR (constant false alarm rate) problem, and it 
offers a good and simple solution in a single-target or scarce-target envl- 
ronment. With the advent of radars with a large time-bandwidth product the 
possibility arises that expanded radar returns due to multiple targets of in- 
terest may overlap very largely or entirely but still may be sufficiently sep- 
arated to be resolved after receiver processing. In this case the compressed 
pulses cannot attain fall amplitude. at the processor output even if the slgnal- 
to-noise ratio at the input is very high; this phenomenon is known as capture 
and small signal suppression. The purpose of #is report is to exhibit that, 
in addition to compressed target responses of redaced magnitudes, false 
targets may be generated with apparent amplitudes of the same order or ex- 
ceeding those of legitimate targets. Spurious target generation in the case of 
chirp radar has been known for some time. The theory has been extended to 
maximum-length linear shift-register codes which ape used as modulation 
functions of pulse-compression and phase-coded CW radars. It is found that 
a single pair of radar returns coded in this manner is subject to capture only 
and not to false target generation. surprisingly, however, the addition of a 
third expanded signal produces a spurious response. This generation of a 
false target should be taken in account when the dynamic range of future 
phase-coded radars using linear shift-register codes is specified, in particu- 
lar if the radar is designed for automatic track and raid-size determination. 

General formulas were derived to predict the effects of capture and 
false target generation as a function of the signal energy distribution and 
relative phasing before entering the limiting device. The formulas were 
evaluated numerically, with the results being presented in the form of 
computer-generated plots. 

PROBLEM STATUS 

This is the final report on NRL Problem ROZ-38.201. The problem will 
be considered closed 30 days after the issuance of this report. 
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CAPTURE AND SPURIOUS TARGET GENERATION DUE TO HARD 
LIMITING lN LARGE TIME-BANDWIDTH PRODUCT RADAR+9 

SUMMARY 

This report contains the results of a study of the effects of limiting combined with 
various types of pulse coding in the suppression or “capture” of real targets and the 
generation of false targets. In the study, the radar return is described by a complex 
signal vector which is modulated in amplitude and in phase. The limiter generates an 
output vector in phase with the input vector, but with a constant (unit) amplitude. 
Throughout this report is is assumed that the limiter input waveform is the sum of two 
or three phase-coded signals of the same kind but with different delays. The component 
signals are assumed to overlap entirely. Their amplitudes and the rf phases, of their 
carriers may be arbitrary. It is assumed that the signal-to-noise ratio is high and, that 
the beat products coming out of the limiter can therefore be predicted. It is shown in the 
different sections of the report how the beat products may interfere with the legitimate 
target returns, thus causing an apparent amplitude change (capture effect) and how they~ 
may combine and form new signals of the same kind as radiated by the radar, thus caus- 
ing a false target response (spurious target, ghost target). 

In the first two sections of the report the model and the assumptions are explained 
and are related to radar designs. Examples show how limiting takes place in radar re- 
ceivers. There are two cases: intentional limiting, to obtain CFAR (constant false 
alarm rate) or to reduce equipment complexity, and accidental limiting, which occurs if 
the radar receiver is overdriven by large clutter returns or electronic interference. 

The sections following the first two sections are devoted to the analysis of the lim- 
iter output if the input consists of two or three mutually delayed expanded radar signals. 
The sections are the following: 

1. General Theory of the Hard Limiting of Two Input Signals. In this section general 
formulas are derived and discussed. The nonlinear relationship between limiter output 
and the instantaneous phase difference of the input signals is developed into a Fourier 
series. The Fourier coefficients C, are calculated for the order n in the range between 
-14 and +15. The results are plotted and printed out for a number of parameter choices. 

2. Limiting of a Pair of Constant-Frequency CW Sinusoids. This section may be of 
interest to the designers of CW, pulsed CW, or pulse doppler radars. 
pares favorably with a bench test. 

The theory com- 

3. Limiting of a Pair of Linearly-Frequency-Modulated Signals. It is shown that in 
addition to small signal suppression there is a false target generation effect. After pulse 
compression an array of false targets appears to both sides of the true target returns. 

4. Limiting of a Pair of Zero-Pi-Phase-Modulated Signals. All components of the 
limiter output may be identified with images of the original input signals. The smaller 
signal will be captured to an amount depending on the intensity ratio before limiting and 
on the carrier rf phase. The capture effect is minimized if the carriers are 90 degrees 
out of phase. There is no evidence of any false targets. 

1 



2 H. H. WOERRLEIN 

5. General Theory of the Hard Limiting of Three Input Signals. The two-signal 
theory is extended to the three-signal case in a straightforward manner. A two- 
dimensional Fourier series is used to express the nonlinear relation between output and 
input quantities. 

6. Limiting of a Triplet of Linear Coded Sequences. It is shown that the limiter 
output is composed in this case of four coherent signals. Three signals are identical 
with the input signals, and they are the true target responses; but the fourth signal has a 
pseudo-random delay, and it is a false target or ghost target. The theory is confirmed 
by the results of a computer simulation. (To be exact regarding the history of this study, 
the computer simulation was made first, and the theoretical explanation for the false 
target generation effect was sought and found afterward.) Pseudo-three-dimensioned 
plots show the various captured true target amplitudes and the false target amplitude as 
a function of the carrier rf phases and with various signal magnitude ratios as parZ~~le= 
ters. It is seen in this section that the false target may be as strong as the true targets. 
If there are two equally strong true targets and one smaller true target, there will be a 
false target of approximately the same size as the smaller true target. The location of 
the false target changes erratically if the true target geometry changes slightly. 

APPROACH 

It is assumed that the radar transmits a phase-coded signal of large time-bandwidth 
product. The phase codes considered in this report are linear FM and linear shift- 
register-generator sequences, as they are described for example in Ref. 1. The target 
space contains a number of discrete point scatterers at different ranges; that is, the tar- 
gets are assumed to be far enough separated that they can be resolved individually by the 
radar. At the radar receiver input there will therefore be a summation of phase- 
modulated sine waves, with the phases between the sine waves depending on the very ac- 
curate range increments between the multiple targets and with the time delays between 
the modulation functions depending somewhat less sensitively on the geometry. The 
summation of the individual radar returns will hence be both amplitude and phase modu- 
lated, even if the transmitted signal envelope was constant. 

The type of transmitted signal calls for a matched filter or a correlator as a 
receiver-processor. In practice the receiver-processor is frequently preceded by a 
hard-limiting device, which may be operating either at IF or on the in-phase and quadra- 
ture components of bipolar video signals, depending on the radar design. Examples of 
such receiver designs are given in the next paragraph. For the purpose of this analysis 
the hard limiter is assumed to be at IF. The hard limiter at bipolar video can be handled 
as a special case of the IF limiter, wherein the input signals are allowed to be in phase 
(positive) or 180 degrees out of phase (negative) and are not allowed to have phase values 
in between. 

To keep the theoretical model as simple as possible without losing significance it is 
assumed that two or three signals with various relative magnitudes, delays, and RF 
phases are present at the limiter input. It is also assumed #at the noise is negligible at 
the limiter input. The assumption of a large signal-to-noise ratio may not always be 
fulfilled, and in such cases the results of this analysis should not be applied. It is well 
known that the limiter acts like a linear device causing a loss of only 1 to 1.5 dE3 in radar 
sensitivity as long as the signals are sufficiently deep in the noise {2,3). This Study is 
concerned with the case that the limiter output signal can be predicted from the radar 
and the target parameters. In this deterministic case the nonlinearities of the channel 
cause the formation of coherent beat products which may correlate with the transmitted 
radar code at a time shift which does not correspond to the actual location of a physical 
target. In this case a spurious target response is generated. The amplitude of the 
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spurious target cam& be explained as simply an addition of range side lobes, as would 
be indicated if Jioear-matched-filter theory would hold. The false targets may be of the 
same magnitude or stronger than the true targets. This fairly quantitative claim 1 has 
been supported by the results of a computer simulation. 

Complex signal notation is used throughout this analysis. The limiter is mathemati- 
cally described as a device which removes the amplitude variation from the complex 
signal. The limiter output is a complex phase-modulated signal of uniform amplitude. 
It is assumed that the limiter operates distortion-free, i.e., that the phase modulation of 
the input signal arrives undistorted at the output. Much of the approach to the problem 
was influenced by thoughts presented by Nolen in a paper entitled “Effects of Limiting on 
Multiple Signals” (4). To preserve continuity and also since Nolen’s paper is not gensr- 
ally available, some of his results, particularly those pertaining to linear FM, are re- 
viewed in this report. 

It may be argued that the signal-to-noise ratio of the unprocessed signal is ordinar- 
ily very small in typical pulse-compression or phase-coded CW correlation radar sys- 
tems of large correlation gain. Therefore the assumption that the signal-to-noise ratio 
io large would in many cases not be valid and the conclusions from this study would not 
apply. It is true that the signal-to-noise ratio may be exceedingly small for a minimum 
detectable signal. One should keep in mind, however, that large interfering scatterers 
(clutter) may be strong enough to dominate over the noise at the limiter input even if the 
rada, is designed to detect very small signals by virtue of a high correlation gain. 

IMPLEMENTATION EXAMPLES OF HARD-LIMITING 
RECEIVER-PROCESSORS 

Hard limiting may take place at IF or at bipolar video, which may also be considered 
as zero IF. Components of limited dynamic range, like RF amplifiers or mixers, may 
act very much like hard limiters as soon as they become saturated by large signals. The 
IF limiter may be considered as a device which ideally would preserve the phase and de- 
stroy the amplitude modulation of a signal. If the input signal is mathematically~de- ” 
scribed by a complex vector of variable amplitude and variable rotation rate; then the 
output signal would be given by a constant-amplitude vector which points at any given 
moment in the same direction as the input vector. The output vector may be assumed to 
have unit amplitude all the time. To practically implement a hard-limiting device one 
may use amplifier chains whose gain is controlled through a feedback loop in such a 
fashion that it is inversely proportional to the input signal amplitude. At the output Of 
the amplifier chain one would observe a phase-modulated sinusoidal signal with constant 
amplitude as long as the feedback loop is fast enough to respond to changes of the input 
amphtude. A probably less troublesome way to achieve hard limiting is to use the cutoff 
characteristics of suitable nonlinear elements like transistors or diodes, after the input 
signal has been sufficiently preamplified. 

Figure 1 is a simplified diagram of a linear FM pulse-compression receiver. The 
RF signal coming from the duplexer is preamplified, heterodyned to a conveniently se- 
lected IF, passed through a hard limiter and a weighting filter, pulse conipressed in an 
ultrasonic dispersive delay line, detected, and video amplified for display. The wsight- 
ing filter may serve a dual purpose in this case. It may be used to reduce the range side 
lobes of the compressed radar signal and to eliminate higher harmonics which may be 
generated by the diode limiter. Io other words it smooths off the corners of the signal 
commg from the limiter. A typical reason for placing a limiter ahead of the pulse- 
compression device is to normalize the noise power so that it is possible to set, after 
pulse compression and rectification, a detection threshold at a computed level to achieve 
a constant false alarm rate, or CFAR, no matter how strong the noise or interference is 
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Fig. 1 - Typical linear FM pulse-compression receiver 

before lim iting. The dynamic range of the radar signal becomes increased through pulse 
compression by as much as its correlation gain. Limiting may also be used to keep the 
dynamic range of the processed signal between convenient boundaries. Another reason 
for lim iting may be that it is simpler or cheaper to use components with a relatively 
small dynamic range and that any large dynamic range after pulse compression would 
not be needed anyway. 

Figure 2 shows a commonly implemented layout for a digital correlator using binary 
shift registers as memory elements and operating on coherently detected, so called bi- 
polar video signals, the in-phase or I-signal and the quadrature or Q-signal. To reduce 
equipment complexity one may omit the Q-signal channel. One loses on that case, how- 
ever, on the average, 3 dB in radar sensitivity. This type of correlator is frequently 
used to process pseudo-randomly zero-pi-phase-coded radar sign&. One of its ad- 
vantages is its flexibility, since the code memory may contain virtually any sequence of 
plus and m inus bits. The only information that is recorded in the shift registers about 
the radar signals is the polarity of the bipolar video signals at the instant of sampling. 
The value of its amplitude is disregarded. The output signals are therefore the same as 
if hard Limiting had taken place in the video amplifiers between the coherent detector 
and the shift registers in Fig. 2. 

GENERAL THEORY OF THE HARD LDATING OF TWO 
INPUT SIGNALS 

The approach in the case of hard lim iting of two input signals is the same as the one 
selected by Nolen (4). In addition to reviewing the cases of two con&ant-frequency 

Fig. 2 - Typical digital matched filter layout 
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sinusoids and two linearly swept FM signals which have been treated by Nolen, a method 
of handling the case of the pseudo-randomly zero-pi-phase-coded signals by essentialiy 
the same technique will be shown. 

Two signals at the lim iter input may be described mathematically as the summation 
of two complex vectors. Through separating out a factor exp ( j2nfot), where f, may 
be called the carrier frequency, one displays only the variations of the complex vectors 
with respect to an average position or with respect to a reference vector. In Fig. 3 there 
is shown as an example two superimposed signal-; ot different magnitudes. 

I 

IMAGVNRY AX,!3 

L-l-74 

VECTOR 2 ROTeiTlNO tlRO”ND THE - , ENOPOlhT OF “E‘TOR 1 
8 %  ,& ‘++ 

\AT~,~~EF~~~~~~~~~O”~~~~ 

*i+ I+ ’ @ ’ 4 J * $ ,d+ ,!. \ /. a? 9‘ ./ 

RELX Lvw3 

. 

Fig. 3 - Phasor diagram illustrating 
lim iter operation in the complex plane 

The signal with the larger amplitude will be arbitrarily designated signal 1. If the 
vectors represent two sine waves of constant but different frequencies, with f, being the 
frequency of sine wave 1, vector 1 may be considered to be fixed and vector 2 to be ro- 
tating with the difference frequency. The true (real) electrical signal may be visualized 
as the projection on the real axis of the complex vector summation rotated around the 
origin at the rate f,. 

The heavily drawn vector in Fig. 3 represents symbolically the lim iter output signal. 
Its endpoint always falls on the unit circle around the origin, and it is aligned in parallel 
with the complex vector resultant from the linear combination of the input signals. 

To solve the problem one has to represent the lim iter output signal as a function of 
the phase difference of the input signals with the ratio of the small signal amplitude to 
the large signal amplitude as a parameter. The evolving nonlinear expression is too 
complicated to be directiy useful, however. Developing the relation between the output 
signal and the phase change of the input signals in a Fourier series permits a much more 
useful functional presentation of the output signal in the fol m  of superimposed coherent 
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phase-modulated signals with amplitudes that can be calculated essentially through eval- 
nation of Fourier coefficients. 

Let it be assumed that the limiter input signals have the constant amplitudes A, and 
A, and the variable phases &( t) and 9,(f), where t is the time. The input signal sin 
which is the sum of the two signals would exhibit both amplitude and phase changes as a 
function of time. By convention the amplitude A, shall be no larger than 4,. One can 
then define the small signal to large signal amplitude ratio a, which would never be 
larger than 1: 

The input signal may then be expressed as 

Sin : *, e 
j&(t) + A, ej+,(t) 

_ AD ejv;o(t) 1 + il ejl+,(t)-rill(f)lj 
i 

= A, e jWc) R ej,c~) @I 

In the last iine of this formula, R represents the length of the resultant vector described 
by the terms between braces on the second line, and a: represents its phase. Reference 
is made to Fig. 4 to explain the relationship. To the end of a unit vector parallel to the 
real axis is attached a smaller vector of length rl and at an angle 

O(t) 7 4,(r) - 9,(r) w 

1 
lMaG,NnRI AXE 

Fig. 4 - Phasor relationships 
in the complex plane 
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The action of the ideal lim iting device is to replace the time-variable amplitude of 
the signal by a unit amplitude and to leave its phase untouched. This may be mathemati- 
tally accomplished by a simple omission of the factors A, and R in Eq. (2). The lim iter 
output hence is given by 

Sout = e j[&dt)+a(t)l (4) 

The function (L depends on the phase difference 8, which in turn is a function of t 
From the geometry depicted in Fig. 4 or through evaluation of the identity 

one obtains 

R .ia(a) = 1 + a .j@  , (5) 

a = tan-l 
a sin 0 

1 + a cos a 

A plot of [I as a function of B and with the parameter a ranging from 0 to 1 in steps of 
0.2 is pictured in Fig. 5. If a = 0, then a is identically equal to 0. For small values of 
a, say for a = 0.2 the function resembles a sine wave. For a = 1, a is a linear saw- 
tooth function connecting from a = -90 degrees to +90 degrees and with the discontinuity 
at a = +180 degrees. For values of a in the range between 0.2 and 1 the function OL (0) 
resembles a distorted sine wave. 

ALPHA NEGREES) 

Fig. 5 - Relation behveen the phase of the sum signal and the 
phase difference of the component signals 

The phase difference 0 may change according to a pseudo-random sequence as a 
function of t, 01‘ it may be some other very complicated sequence. Hence the nonlinear 
expression which one obtains for the output signal through combining Eqs. (4) and (6), 
namely, 

SO”t = exp j 
[ 
+o,(t) + tan-’ 

a sin O(t) 
1 I + a cos a(t) ’ 

does not directly indicate which signal components are present in aout. In particular it 
does not show how strongly the original signals are present and whether and to what 



8 H. H. WOERRLEIN 

extent new signals are generated. It is a fortunate circumstance that the Fourier series 
development of Eq. (7) leads to a summation whose terms may be identified in several 
cases of practical importance with images of the input signals and with newly generated 
signals. Since a is a periodic function of B with the period zn, one may use the devel- 
opment 

&a(B) = exp 
i 
j tan-1 a sin * 

I f a CDS 6 1 

c,(a) .j** @I 

This formula expresses an identity except at those points where the function on the left 
side has a discontilluity. A finite number of summation terms may provide a very good 
approximation except in the vicinity of d&continuities. It may be remarked that Eq. (81 
does not represent a spectral decomposition of the limiter output but rather a series ex- 
pansion for a nonlinear relationship. 

All coefficients c,, (a) are real, since a is an odd function of B . The proof is as 
follows: As a consequence of the relationship .ja(-@) = [eja@)]* I where the asterisk 
indicates complex conjugate, one may equate E C,(a) e-j’@ and [XX C,( a) &e]* . Hence 
Cn( a) = Pn( a) ; i.e., the coefficients C, are real. In the general case the coefficients C, 
and C-, will not be the same, however. 

Iiolen has shown how the coefficients C, may be obtained by collection of terms 
from an infinite product of infinite series in powers of exp ( j B ). it is possible to calcu- 
late the C, values through numerical integration methods, which may perhaps be more 
easily adapted to automatic computer evaluation. The coefficients may be obtained in the 
usual way through multiplication of Eq. (8) with exp (-ime ) and integration over B : 

tn tm 

=I 2 
c,(q .jn@ .-jmfJ de 

-n n=-m 

I 

tn 
C,(a) = L & Ia(B )-4 da 

27r _n 

This integral may be decomposed into a real and an imaginary part: 

I 

+7, 
1 

!z 
cos [G(6) - n6] dfJ + j & sin [a(6) - ng] d$ 

-I/ 
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The second integral is equal to 0, since (I is an odd function of B By the same token 
the remaining integral taken from B = -v to B = +n is equal to twice the integral taken 
from D = 0 to .9 = n: 

I 

t,, 
C” = L 

2n .~ 
cos [a(O) -nOI do 

= ‘I 

n 

7r cos [a(s) - ml dQ 
0 

Inserting Eq. (6) for a as a function of 0 leads to the full expression for the C? values: 

C” =; a sin Q 

1 + a cos * 

Although this integral cannot be evaluated in closed form for any arbitrary valwof the sig- 
nal amplitude ratio a, it can be integrated in the special case a = 1. In this ca6e one,, 
obtains 

, 

a(e) = tan-’ sin Q _ tan-~ 
2 sin $ cos $ 

1 + cos 0 2 cos2 a 2 

= tan-’ 
sin $ 
-: B 
C"S$ 

2 (14) 

This is the equation for the straight line which appears in Fig. 5 if the parameter a is 
equal to 1. Inserting Eq. (14) into Eq. (12) leads to 

C”(l) = ; jy ,,(+ - n9) do = &$L$ 

Also if a = 0, i.e., if the smaller signal disappears entirely, a trivial solution exists. In 
that cause LI is identically equal to 0 and one obtains 

C”(0) = ; 
I 

37 
cos nod@ = 1, if n= 0, 

0 
= 0, for all other n values (16) 

The general shape of the curves in Fig. 5 suggests that a sine function might be a reason- 
ably good approximation for (L (e) as long as a is small enough. Analytically one may 
derive from Eq. (6) that a good approximation is 

a = a sin Q , (17) 

for small values of a. Inserting this approximation into the integral for C, leads to 

cm (a sin O-n*) do (18) 
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This is an integral representation of a Bessel function of the first kind of the order n and 
with the argument a (Ref. 5). 

A good approximation to C, and C_, for sufficiently small values of a is therefore 
C, = J,(a) and C-, : J-*(a). From the first term of the McLaurin series for J (x) one 
obtains the approximate relationships 

C -,=-a,2 and C,=a,‘2, if a C< I 091 

It would be erroneous, however, to regard Eq. (18) as an approximation for the higher 
order coefficients C,. The higher order coefficient& C, depend very critically on the 
higher order terms in the development of LI as a function of B, and exactly those have 
been neglected in the approximation given as Eq. (17). A valid approximation may be ex- 
pressed as a summation of products of Bessel functions (44). 

The approximate expression given as Eq. (19) along with the special result given as 
Eq. (15) provides some insight into the general behavior of the Fourier coefficients C, 
as functions of a. A numerical method based on a fast Fourier transform computer 
program has been used to obtain numeric;rl answers for a set of different parameters. 
The computer program and the methods by which it was checked are explained in the Ap- 
pendix of this report. The results are presented as a set of curves in Fig. 6 and in the 
form of line spectra in Fig. 7. Figure ? also exhibits digital printouts for the C, values. 
Ths following se&ion of this report will illuminate the physical significance of the Fourier 
coefficients C, in a special case. 

Fig. 6 -The Fourier coefficients C, as functions of the eig- 
nal intensity ratio a (labeled A by the computer) and of the 
order n (labeled N) ranging behveen -4 and 5 
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Fig. 7(i) - Spectral line presentation of the Fourier coefficients C, 
with the order n behveen -14 and 15 and strength above -50 &  

An expression for the lim iter output signal which will later prove to be quite useful 
will be derived. The combination of Eqs. (3), (4), and (8) results in 

So.t(t) = yJ cn e i[+,(t)-(n-l)+,(t)j w 
n=-m 

where the coefficients C, are the Fourier coefficients which have been discussed in this 
section. 

LIMITING OF A PAIR OF CONSTANT-FREQUENCY CW SINUSOIDS 

The phases of two input signals that are constant-frequency CW sinusoids can be 
expressed through hvo linear functions of time: 

&(f) x 2nfot and 4,(t) : 2nf1t i- 'b10 , (21) 

where f, and f, are the constant frequencies of the sinusoids, C/),0 is the phase shift 
which exists at the moment t = 0, and the small to larger signal amplitude ratio is 
given by the parameter .7 which has been defined in Eq. (1). 

Insertion of Eq. (21) into Eq. (20) permits one to write an expression for the lim iter 
output: 

S,,t(‘) = r c,, e 
j(Zn[f,r+n(f,-~,)r]+~,~,“) 

(22) 
n=-m 

This is an expression for a linear superposition of constant-frequency sinusoids, consist- 
ing of frequency I, with amplitude C,(a), frequency f 1 with amplitude C1( R), and side- 
bands arranged on both sides of the pair of input frequencies at regular intervals deter- 
m ined by the frequency difference f, f. and with amplitudes tapering off and given by 
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cz, c3, c,, **, on the side adjacent to f 1 and given by C., , C_ z, C-, , . . . on the other 
side. Consequently Fig. 7 may bs regarded as line spectra of the limiter output wax?- 
forms in the case of two monochromatic input oscillations with different frequencies. 
The figure shows how the spectral envelope becomes distorted unsymmetrically unless 
the two input signals are equally intense. It should also be noted from Fig. 7 that the 
higher order beat products (n farther from 0) fall off much faster for small a values 
(sI,/sO closer to 0 db) than for a values in the vicinity of 1. It is evident that the smaller 
signal may be suppressed relative to the larger signal by as much as approximately 6 dB, 
as it is well known (6). 

It can be seen directly from Eq. (19) that the amplitude ratio of the smaller and the 
much Iarger signal after limiting is equal to 

cl(a) -,a, with a <c 1 
C&“) 2 

(23) 

That is l/2 the amplitude ratio before limiting. The factor l/2 in amplitude corresponds 
to -6.02 dl3. The smaller signal is aeeompanied by a mirror image of approximately the 
same size. 

It is also possible to explain the 6-dB suppression of a small signal without going 
into &thematics. The small signal may be visualized as a small vector attached to the 
endpoint of the larger signal vector. The vector resultant from the summation of both 
input vectors equals the large signal vector with a small additional amplitude and phase 
modulation caused by the smaller signal. Half of the small signal energy produces the 
amplitude modulation and half produces the phase modulation of the signal superposition. 
After limiting, the signal energy is normalized and the amplitude modulation is removed, 
which would account for a 3-d3 loss. The phase modulation is contained in two sidebands, 
namely in the captured small signal and in its image. Both are of approximately the 
same intensity and thus suffer a power splitting, which accounts for another 3-dB loss in 
the power balance. 

A simple bench test has been run by R. M. Crisler to check on the validity of the 
theoretical results described in this section. Two constant-frequency sine waves of high 
spectral purity, one at 60 MHz and the other one at 60.016 MHz were added together in a 
hybrid circuit, amplified in an intentionally strongly overdriven and hence hard-limiting 
IF strip and displayed and photographed on a Singer Model SPA-100 microwave spectrum 
analyzer. The amplitude ratio a of the two sinusoids could be adjusted by means of a 
calibrated attenuator inserted in the 60.016-MHz signal path before the hybrid. The IF 
amplifier may be assumed to have a fairly flat amplitude response over the frequency ln- 
terval of interest. Figure 8(a) shows the signal superposition before entering the IF 
strip as it appeared on the screen of a Tektronix type 454 oscilloscope. In Fig. 8(b) is a 
display of the amplifier output? which exhibits fairly constant amplitude except in the 
immediate vicinity of the nulls of the input signal envelope. When the input signals dif- 
fered by a few decibels, the minima of the unlimited signal envelope were large enough to 
saturate the IF amplifier so that one would observe a constant amplitude oscillation with- 
out any dips in the output. Figures 8(c) through 8(j) show the results of the spectral anal- 
ysis of the linearly superimposed sinusoids (Fig. 8(c)) and of the hard-limited signals 
(the rest of the pictures). The vertical scale is linear in decibels, each division eorre- 
spending to a lo-dB step. Figure E(c) shows that the input frequencies are free from 
spurious sidebands before they enter the limiter. In Fig, 8(d) one sees a symmetrical 
array of spectral lines generated on both sides of the equally strong input frequencies. 
It should be remarked that the amplitudes of the signal frequencies f, and f, are ap- 
proximately 4 dB below the intensity provided by the limiter for a single input signal 
(compare Fig. 8(d) with Fig. 8G)). 



(a) Scope picture of two equally 
strong sinusoidal signals be- 
fore limiting 
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(e) Spectrum of the limiter 
output signal from two input 
signals differing by 5 dB 
(same as Fig. 7(d)) 

(h) Spectrum of. the limiter 
output signal from,hvo’input 
signals differing by 20 dB 
(same as Fig. 7(g)) ~‘~~ : 

(b) Scope picture of the same 
signals as in Fig. S(a) but after 
hard limiting 

(f) Spectrum of the limiter 
output signal fnxn two input 
signals differing by 10 dB 
(same as Fig. ‘7(e)) 

(c) Spectrum of the 
signals of Fig. S(a) 

(g) Spectrum of the limiter 
output signal fmm two input 
signals differing by 15 dB 
(same as Fig. T(f)) 

(i) Spectrum of the l&&r 
output signal from two input 
signals differing by 25 dB 
(same as Fig. 7(h)) 

(j) Spectrum of the limiter 
output signal from one input 
signal 

(d) Spectrum of the limiter 
output signal (Fig. 8(b)) from 
hvo equally strong input sig- 
nals (same as Fig. 7(a)) Fig. 8 - Waveforms and spectra recorded in a bench test 
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If the input signals differ by as little as 5 dB, the stronger output signal obtains 
nearly its full size, and the smaller signal appears at approximately -10 dB. That means 
the smaller signal was suppressed by approximately 5 dB through the limiter and it is 
accompanied by a slightly smaller image line and by a regularly spaced array of spectral 
lines which taper off unsymmetrically (Fig. 8(e)). If the input signals differ by 10 dE 
(Fig. 8(f)), then nearly the full amount of the theoretically predicted 6-d3 small signal 
suppression may be observed. Figures 8(g), 8(h), and 8(i) show the small signal sup- 
pressed by 6 dB and accompanied by an equally strong image when the input signals dif- 
fered by 15, 20, and 25 dB respectively before limiting. Figure 8(j) shows a single spec- 
tral line representing the fundamental frequency of a hard-limited single-frequency input. 
The spectral lines displayed in Figs. 8(d) to 8(i) are the beat frequencies of the two input 
signals due to the nonlinear processing; the spectral lines are not harmonic frequencies. 
Harmonic frequencies which are present if a BO-MIIz signal is limited would be at multi- 
ples of 60 MHz, and they would therefore be outside the spectral range displayed, which 
covered an interval of approximately 200 kEz centered around 60 MHz. 

Point-by-point comparison of the measured spectra such as shown in Fig. 8 and the 
calculated C, values pictured in Fig. 7 discloses their exact matching. 

This section of the report may he concluded with the remark that the beat frequencies 
generated through hard limiting would appear like false targets in the ease of a CW radar 
or a pulse doppler radar of insufficient dynamic range. As applied to a pulse doppler 
radar one may say that two clutter components of slightly different doppler frequencies 
but both falling in the clutter notch of the processor response-if strong enough to drive 
the IF amplifier into saturation - ma y generate beat frequencies which would be within 
the accepted doppler domain. 

It may be noted also that an analogy exists with an antenna problem. False angular 
responses (ghost targets) are observed in a two-target environment if the elements of an 
array antenna are nonlinear (‘7,8). 

LEUITINCi OF A PAIR OF LINEARLY-FREQUEliCY- 
MODULATED SIGNALS 

Consider a pair of linearly-frequency-modulated signals in the idealized case where 
the input sign& are entirely overlapping and very strong as compared to thermal noise. 
The analysis is very similar to the one given in the previous section for the case of 
constant-frequency sinusoids. A pair of linear FM signals gives rise to beat frequencies 
within the bandwidth of the frequency excursion. These constitute signals which are 
compressed by the matched filter or eorrelator and which will appear, after processing, 
as an array of false targets both behind and ahead of the pair of true targets (4). If the 
expanded signals overlap less than completely, there will be a proportionate reduction of 
the false target magnitudes (4). Let one input signal be given by 

d, exp j(2nf,ttbt2) 

and the other by a scaled, time- and phase-shifted version of the first signal: 

A, expj[Znf,,(t-T) tb(t-T)Z + r,+lo] 

The instantaneous frequency of the first signal, which is by definition equal to the deriva- 
tive of its phase divided by Zn, is then equal to 
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and the instantaneous frequency of the second signal is given by 

f. +$(t-T) 
where T is the mutual time shift between the two input signals. Inserting 

and 

<b&r) L 2nfot + btz (24) 

yl,(t) = 2nfo(t-T) + b (t-T)2 + +,, (25) 

into Eq. (20) results in 

+m 
S.xt(L) = c C” e 

j[2n~~o(t-“~)+b(t-nT)2t”~,0-(“-1)”bTZ] 
(26) 

n--m 

Equation (26) says that the lim iter output may be decomposed into a summation of linear 
FM signals. By comparison with the expressions for the input signals one derives that 
the lim iter output consists of an array of mutually-time-shifted images of the input wave- 
forms, with delay T between adjacent components and with amplitude C,, for the nth 
component. 

At the output of the matched filter or correlator which would follow in the signal 
processing scheme after the hard lim iter one would therefore observe an array of com- 
pressed pulses, namely, the large signal response with amplitude c,,, the smaller signal 
response with amplitude C , , an image response with amplitude C- 1, and smaller pulskzs 
at regular intervals and with amplitudes C,, CA, . , . 
nal and with amplitudes C., , C-,, . . 

on the side of the smaller true sig- 
on the side of the image. If the compressed and 

detected signals were passed through a logarithmic amplifier, one would be able tb ob- 
serve at its output essentially the same waveforms as the ones depicted in Figs. 8(d) 
through 8(j). All that has been said in the previous section on the amplitude ratios and 
capture effects would apply also in the case of linear FM. One could in fact envisage the 
spectrum analyzer displays 8(d) through 8(j) also as scope pictures for the case of linear 
FM, simply by considering the traces as functions of time instead of frequency. It is 
then obvious that one observes false targets in addition to the true targets. This phe- 
nomenon may be very cumbersome if the radar should be used for more functions than 
simple target detection. The way out of this di lemma would of course be to use a re- 
ceiver and signal processor of sufficiently large dynamic range. 

Attention should also be given to the phase term 2nfonT in Eq. (26), which causes 
the doppler frequency of false targets to increase with order n if there is a mutti 
motion between the true targets. This means that the doppler of false targets may be 
within the acceptance domain of a pulse-compression pulse doppler radar even if the 
“true” responses due to clutter would be rejected by means of doppler filtering of the 
compressed signals. 
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LIMITING OF A PAIR OF ZERO-PI-PHASE-MODULATED SIGNALS 

Consider now the class of radar signals which may be generated through switching 
the phase of a sinusoid between 0 and 180 degrees depending on a binary code. The bi- 
nary code may be visualized as a sequence of zeros and ones or as a sequence of plus 
and minus signs or as a video type waveform alternating between two discrete voltage 
levels. Since the result of this section will be generally valid for any binary coded se- 
quence, no further restriction will be made at this point as to specific code classes. An 
expression shall be derived for the smaIl and the large signal size after hard limiting as 
a function of the RF phase $,* between the input sinusoids and with the input amplitude 
ratio a as a parameter. As before in this report the RF signals are assumed to be corn- 
pletely overlapping and strong as compared to the noise. Equation (20) will permit one 
to decompose the limiter output into a meaningful sum of component signals which may 
be identified with the input signals. Let the code be represented by a sequence of COeffi- 
cients ck whose values are either 0 or 1. The phase modulation impressed on a radar 
signal may then be expressed as 

vi,(t) = 77 T 
t - k-r Ct rect 7 (2-a 

where the summation runs over all k values, t is the time, 7 is the duration of a bit, 
and rect x stands for Woodward’s rectangular function notation: 

rect x = I , for x in the interval (-0.5.0.5) I 
cm 

= 0. outside the same interval 

If the carrier frequency is given by f,,, then the phase of the stronger input signal may 
be written as 

+Jt) = Znf,t + 9%(t) I (2% 

and the phase of the smaller signal may be derived from the phase of the stronger signal 
through introduction of a time delay T and the mutual RF phase & 0: 

(h*(t) = 2nf,t + ddf-9 + vi,* @Q 

Inserting these expressions into Eq. (20) yields 

S,,3t(t) = r C” e j[n~=(t-T)-(n-l)~=(Otnglol ejZnfof (31) 
“c-m 

It is now important to observe that both &( t ) and &( t -’ I) can assume only either one 
of the discrete values 0 or 71. Hence 

e i[~,~,(r-r)-(~-l)~~=(t)l = ej+C(c) , for all even Values of ” ) 
432) 

= ej4c( L-T , for all odd values of n 

Equation (31) may therefore be transformed into two separate summations, one of them 
combining all even-index terms and the other collecting all odd-index terms: 
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+m 
+ 

P  
C *“+I e 

j(2n+lM10 

n=-ar 1 

ej+,(t-T) ej2vfot (33) 

From this expression one can read that the lim iter output may be written as the summa- 
tion of two signals, each of them being of the same functional shape as one of the input 
signals, and with the complex amplitudes described by the sums of exponentially weighted 
Fourier coefficients of even or odd order respectively: 

p Czn e j*h,) or (c CZn+l ej(2n+lM ,o) (34) 

These expressions are consequently properly called the amplitude of the stronger signal 
and the amplitude of the smaller signal after lim iting has taken place. Since Eq. (33) is 
a comljlete description of the lim iter output signal as long as the assumptions made are 
valid, there is no indication of false targets. 

It is possible to transform expressions (34) back to their original domain in a gen- 
eral fashion so that explicit knowledge of Fourier coefficients c,(~) will not be required 
for numerical evaluation of capture effects. From Eq. (8) one may derive 

&=(0*n) = C cnca) eirr(e+n) = C c-1)” cnca) &3 (35) 

Hence one obtains through addition of Eqs. (35) and (8) 

d=(e) + .ja(e+n) = 2 CC~,(~) .jzn8 (36) 

Through subtraction one obtains 

&o(o) . &a(e+n) _ 2 C c2,+1(a) J(2n+1)8 (37) 

These are general relations exactly of the form as needed to express the lim iter output 
signal amplitudes (34) in terms of the function exp ja(/j). 
after lim iting is 

The large signal amplitude 

c CZn ejz+o : [eja:+,o) + ej~(,!,o+~)]/2 (38) 

and the small signal amplitude is 

c % “+I e 1(2n+1)+,0 
- [e j=(&,) - ej~(+,,+~)ll; (39) 

Equations (38) and (39) have been programmed for automatic computer evaluation. The 
results are depicted in Fig. 9 both for the large and for the small signal distributions. 
There is a horizontal line at the -3-dB level labeled with the parameter 0 dB indicating 
that the power is equally split between the output signals if the input signals are equally 
strong. AI1 curves below or above the -3-dB line refer to the smaller or stronger signal 
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0 Y5 90 131 18” 
m,, IN DEGREES 

Fig. 9 - Capture of a pair of zero-pi phase-coded signals as a 
function of the earlier rf phase, with the signal intensity ratio 
as the parameter 

respectively. The curves indicate that the capture effects are minimized if the RF phase 
between the input signals is around 90 or 270 degrees. If the RF phase amounts to zero 
or 180 degrees, the smaller signal will be suppressed entirely, at least in the absence of 
noise or any other type of third signal component. Noise in addition to the two input sig- 
nals will permit the smaller signal to determine the limiter output signal with some fi- 
nite probability even in the case of an RF phase difference of 0 or 180 degrees. If there 
is a correlated third signal at the limiter input, there may be a false target generation 
effect, as will be shown in the next section. It should be mentioned that Eqs. (38) and 
(39) may be used to derive a simple geometric construction method in a complex plane 
to describe the capture effects of two zero-pi-phase-coded signals. It is worth under- 
scoring that Eqs. (38) and (39) properly describe the capture effects no matter what 
particular binary phase code is used. 

GENERAL THEORY OF THE HARD LIMITING OF THREE 
INPUT SIGNALS 

The previous sections have discussed and provided mathematical descriptions of 
how the limiting of a pair of linear FM signals gives rise not only to capture effects but 
also to spurious target generation, whereas any kind of zero-pi-phase-coded signal pair is 
subject only to capture and not to false target generation. The absence of false targets in 
the case of zero-pi phase codes, although in agreement with general knowledge on this 
subject, may seem somewhat baffling from a theoretical point of view, in particular since 
certain pseudo-random sequences, namely linear maximal sequences, which are fre- 
quently used as radar modulation functions and which are easily generated by means of 
feedback shift registers, exhibit a very strong structure and have the property to produce 
a sequence of the same code but with a different delay if combined linearly. This prop- 
erty justifies the adjective “linear” in “linear maximal sequences,” and when one speaks 
here of a linear code combination, one means the new code generated if two codes with a 
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relative delay between them are combined according to the rules of Boolean algebra 
on a bit-to-bit basis. This kind of linear combination would also take place if two phase 
modulated RF signals are multiplied or beat together, since the multiplication of com- 
plex signals results in the addition of the exponents. The effect of signal multiplication 
takes place at any nonlinear element in the signal channel and especially in a lim iter. It 
was therefore speculated that false targets m ight be generated, if not in the case of two 
input signals, in the case of three or more input signals. 

The theory developed is a simple extension of the analysis made for the two-input- 
signal case presented earlier in this report. The same assumptions are made through- 
out, namely, complete expanded signal overlap and high signal-to-noise ratio. 
signal to the lim iter may then be written as 

The input : 

Sin = A0 e%( f, + A, .%(f) + A, .j+dt) 

= A, .Wt) ( 1 + a, .jh + aZ eWz ) 

= A, .j6dt) R eia(t) (40) 

The convention is that the first signal, A, SZ’$O(~), 
meaningful to describe the input signal 

IS the strongest signal, so that it is 
sin as the strongest signal modified in amplitude 

and in phase through the presence of two smaller signals, mathematically expressed in 
Eq. (40) through R and a. Set 

A, A, 
al ‘7 and a2 za, 

I) 0 

al and a2 being the two ratios of a smaller signal to the large signal, and set 

8, = $1 - +o and B, = & - & (42) 

The ideal lim iter normalizes the amplitude of the input signal, Eq. (40), while preserving 
its phase function d,(t) + o(t): 

SD”t = e 
j[+o(t)+a(f)l (43) 

where lr is the phase angle of the complex factor between large parentheses on the sec. 
and line of Eq. (40): 

a(t) = fan-’ 
a, sin 0, + a2 sin R, 

1 + a, CDS D, + ax COS “, 

To obtain a physically meaningful interpretation of the lim iter output signal it has to be 
decomposed into a summation of signals. In the previously treated case of a pair of in- 
put signals it proved successful to develop a as a function of B into a Fourier series. 
Applying the same technique in the case of a triplet of input signals leads us to consider 
the development 
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einiO,,O'z) 
= *z "Z 

?n,:~l. aZf e 
j(-Ul+m?2 1 (45) 

which is a double Fourier series for a as a function of 0 1 and i) 2. Combining Eq. (43) 
with Eqs. (45) and (42) leads to the series development for the limiter output: 

The Fourier coefficients C,*,, may be expressed as a double integral, and they may be 
determined by numerical integration methods. In the case of practical importance which 
will be studied in the next section one obtains general expressions for limiter output sig- 
nal amplitudes which may be transformed back to the original domain, so that any ex- 
plicit knowledge of Fourier coefficients will not be required. The Fourier series ap- 
proach permits one to derive relationships in terms of the original quantities. 

LIMITING OF A TRIPLET OF LINEAR CODED SEQUEWES 

In the case of a triplet of linear coded sequences let the phase modulation function of 
the strongest signal be given by 

c/&.(i) = rw‘7 71 g Ck rect q& 147) 

where t is the time, 7 is the duration of a bit, ck = 0 or 1 depending on a maximal lin- 
ear sequence, L is the code length, and repLl indicates the periodic repetition of the 
code, the repetition period being equal to LT. A modulation function of this kind is usually 
generated by means of shift registers with suitable feedback connections. A shift register 
generator consisting of S stages may be used to generate a code of length L = 2’ - 1. 
This kind of code generation is frequently used in radar, both for theoretical and practi- 
cal reasons. This method requires little hardware, and it yields a code with a nearly 
ideal autocorrelation function, the range side lobes being at a uniform level of -20 log L 
dB below the main peak. The low and uniform-range side-lobe level is a consequence of 
the strong structure inherent in this kind of pseudo-random sequence, namely, of the 
property that the codes added bit by bit to a delayed version of the same code under the 
rules of Boolean algebra will result in the original code sequence shifted by a pseudo- 
random number of bits. It will be seen that the same property is responsible for the gen- 
eration of a false target of sometimes larger magnitude than any one of the suppressed 
true target returns. 

As an example consider the shift register generator depicted in Fig. 10. At its out- 
put one would observe a periodic binary code sequence, the repetition period being equal 
to 31 clock pulse intervals. Since the shift register contains five stages, the feedback is 
connected as shown in Fig. 10 to ensure maximum code Iength and L = 25 - 1 = 25 - 1 = 
31. If one would start to count a new period for example when the shift register is loaded 
with the sequence 1, 0, 0, 0, 0, then as a consequence of the operation depicted in the fig- 
ure one wouid be able to record the output 

1O0001010111011000t111100110100. 

If this code word is added to the same word but shifted to the right by one bit, namely, 

0~0000~01011~0~10001~11100i1~10, 
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Fig. 10 - Maximum-code-length shift register code generator 

one obtains as a result of the binary addition the new code word 

1100011111001101001000010101110. 

The remarkable feature of linear coded sequences is that the code word obtained is not 
any arbitrary sequence but is the same as the original sequence shifted by a number of 
bits, in this case shifted by 18 bits as one can easily verify by inspection of the sequences. 
Binary code addition takes place if a signal of the type exp j+,( t ) is multiplied with an- 
other signal exp j+,( t - T), 7 being the relative delay between the two signals, since the 
product of exp j+,(t) and exp j+,( t - 7) is exp j [&(f) + &( t - T)] . 
of linear coded sequences one has then 

In the special case 

and also 

ei+,(t) ej+c(t-r,) ei4rct-T2) = ej+c(t-r’) (48) 

T’ being a delay which depends in a pseudo-random fashion on the shift between the codes 
added together. 

Now apply the results from the previous section. The lim iter input signal is mathe- 
matically described by Eq. (40), where the exponent of the strongest signal is 

j+,Jt) = j L+,(t) f 2nfo tl , 

the exponent of the second signal is 

(49) 

i+,(t) = i[&(t-TI) + Znf,,f + $,,,I . 

and the exponent of the third signal is 

(50) 

b&(f) = j [+,(t- T2 ) + 2nf,, t + &,,I (51) 

Here, f, is the RF frequency, ti10 and +zO are the RF phases between the second and 
the first and the third and the first signal respectively, and T, and 7, are the mutual 
delays. Inserting Eqs. (49), (50), and (51) into Eq. (46) results in 
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lsPTR.CT 

Hard limiting before pulse compression or correlation processing is a common approach 
to the CFAR (constant false alarm rate) problem, and it offers a good and simple solution in a 
single-target or scarce-target environment. With the advent of radars with a large time- 
bandwidth product the possibility arises that expanded radar returns due to multiple targets 
of interest may overlap very largely or entirely but still may be sufficiently separated to be 
resolved after receiver processing. In this case the compressed pulses cannot attain full 
amplitude at the processor output even if the signal-to-noise ratio at the input is very high; 
this phenomenon is known as capture and small signal suppression. The purpose of this re- 
port is to exhibit that, in addition to compressed target responses of reduced magnitudes, 
false targets may be generated with apparent amplitudes of the same order or exceeding those 
of legitimate targets. Spurious target generation in the case of chirp radar has been known 
for some time. The theory has been extended to maximum-length linear shift-register codes 
which are used as modulation functions of pulse-compression and phase-coded CW radars. It 
is found that a single pair of radar returns coded in this manner is subject to capture only ant 
not to false target generation. Surprisingly, however, the addition of a third expanded signal 
produces a spurious response. This generation of a false target should be taken in account 
when the dynamic range of future phase-coded radars using linear shift-register codes is 
specified, in particular if the radar is designed for automatic track and raid-size determina- 
tion. 
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Genersl formulas were derived to predict the effects of capture and false target gener- 
ation as a function of the signal energy distribution and relative phasing before entering the 
limiting device. The formulas were evaluated numerically, with the results being presented 
in the form of computer-generated plots. 
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ABSTRACT 

Hard limiting before pulse compression or correlation processing is a 
common approach to the CFAR (constant false alarm rate) problem, and it 
offers a good and simple solution in a single-target or scarce-target envl- 
ronment. With the advent of radars with a large time-bandwidth product the 
possibility arises that expanded radar returns due to multiple targets of in- 
terest may overlap very largely or entirely but still may be sufficiently sep- 
arated to be resolved after receiver processing. In this case the compressed 
pulses cannot attain fall amplitude. at the processor output even if the slgnal- 
to-noise ratio at the input is very high; this phenomenon is known as capture 
and small signal suppression. The purpose of #is report is to exhibit that, 
in addition to compressed target responses of redaced magnitudes, false 
targets may be generated with apparent amplitudes of the same order or ex- 
ceeding those of legitimate targets. Spurious target generation in the case of 
chirp radar has been known for some time. The theory has been extended to 
maximum-length linear shift-register codes which ape used as modulation 
functions of pulse-compression and phase-coded CW radars. It is found that 
a single pair of radar returns coded in this manner is subject to capture only 
and not to false target generation. surprisingly, however, the addition of a 
third expanded signal produces a spurious response. This generation of a 
false target should be taken in account when the dynamic range of future 
phase-coded radars using linear shift-register codes is specified, in particu- 
lar if the radar is designed for automatic track and raid-size determination. 

General formulas were derived to predict the effects of capture and 
false target generation as a function of the signal energy distribution and 
relative phasing before entering the limiting device. The formulas were 
evaluated numerically, with the results being presented in the form of 
computer-generated plots. 
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CAPTURE AND SPURIOUS TARGET GENERATION DUE TO HARD 
LIMITING lN LARGE TIME-BANDWIDTH PRODUCT RADAR+9 

SUMMARY 

This report contains the results of a study of the effects of limiting combined with 
various types of pulse coding in the suppression or “capture” of real targets and the 
generation of false targets. In the study, the radar return is described by a complex 
signal vector which is modulated in amplitude and in phase. The limiter generates an 
output vector in phase with the input vector, but with a constant (unit) amplitude. 
Throughout this report is is assumed that the limiter input waveform is the sum of two 
or three phase-coded signals of the same kind but with different delays. The component 
signals are assumed to overlap entirely. Their amplitudes and the rf phases, of their 
carriers may be arbitrary. It is assumed that the signal-to-noise ratio is high and, that 
the beat products coming out of the limiter can therefore be predicted. It is shown in the 
different sections of the report how the beat products may interfere with the legitimate 
target returns, thus causing an apparent amplitude change (capture effect) and how they~ 
may combine and form new signals of the same kind as radiated by the radar, thus caus- 
ing a false target response (spurious target, ghost target). 

In the first two sections of the report the model and the assumptions are explained 
and are related to radar designs. Examples show how limiting takes place in radar re- 
ceivers. There are two cases: intentional limiting, to obtain CFAR (constant false 
alarm rate) or to reduce equipment complexity, and accidental limiting, which occurs if 
the radar receiver is overdriven by large clutter returns or electronic interference. 

The sections following the first two sections are devoted to the analysis of the lim- 
iter output if the input consists of two or three mutually delayed expanded radar signals. 
The sections are the following: 

1. General Theory of the Hard Limiting of Two Input Signals. In this section general 
formulas are derived and discussed. The nonlinear relationship between limiter output 
and the instantaneous phase difference of the input signals is developed into a Fourier 
series. The Fourier coefficients C, are calculated for the order n in the range between 
-14 and +15. The results are plotted and printed out for a number of parameter choices. 

2. Limiting of a Pair of Constant-Frequency CW Sinusoids. This section may be of 
interest to the designers of CW, pulsed CW, or pulse doppler radars. 
pares favorably with a bench test. 

The theory com- 

3. Limiting of a Pair of Linearly-Frequency-Modulated Signals. It is shown that in 
addition to small signal suppression there is a false target generation effect. After pulse 
compression an array of false targets appears to both sides of the true target returns. 

4. Limiting of a Pair of Zero-Pi-Phase-Modulated Signals. All components of the 
limiter output may be identified with images of the original input signals. The smaller 
signal will be captured to an amount depending on the intensity ratio before limiting and 
on the carrier rf phase. The capture effect is minimized if the carriers are 90 degrees 
out of phase. There is no evidence of any false targets. 

1 



2 H. H. WOERRLEIN 

5. General Theory of the Hard Limiting of Three Input Signals. The two-signal 
theory is extended to the three-signal case in a straightforward manner. A two- 
dimensional Fourier series is used to express the nonlinear relation between output and 
input quantities. 

6. Limiting of a Triplet of Linear Coded Sequences. It is shown that the limiter 
output is composed in this case of four coherent signals. Three signals are identical 
with the input signals, and they are the true target responses; but the fourth signal has a 
pseudo-random delay, and it is a false target or ghost target. The theory is confirmed 
by the results of a computer simulation. (To be exact regarding the history of this study, 
the computer simulation was made first, and the theoretical explanation for the false 
target generation effect was sought and found afterward.) Pseudo-three-dimensioned 
plots show the various captured true target amplitudes and the false target amplitude as 
a function of the carrier rf phases and with various signal magnitude ratios as parZ~~le= 
ters. It is seen in this section that the false target may be as strong as the true targets. 
If there are two equally strong true targets and one smaller true target, there will be a 
false target of approximately the same size as the smaller true target. The location of 
the false target changes erratically if the true target geometry changes slightly. 

APPROACH 

It is assumed that the radar transmits a phase-coded signal of large time-bandwidth 
product. The phase codes considered in this report are linear FM and linear shift- 
register-generator sequences, as they are described for example in Ref. 1. The target 
space contains a number of discrete point scatterers at different ranges; that is, the tar- 
gets are assumed to be far enough separated that they can be resolved individually by the 
radar. At the radar receiver input there will therefore be a summation of phase- 
modulated sine waves, with the phases between the sine waves depending on the very ac- 
curate range increments between the multiple targets and with the time delays between 
the modulation functions depending somewhat less sensitively on the geometry. The 
summation of the individual radar returns will hence be both amplitude and phase modu- 
lated, even if the transmitted signal envelope was constant. 

The type of transmitted signal calls for a matched filter or a correlator as a 
receiver-processor. In practice the receiver-processor is frequently preceded by a 
hard-limiting device, which may be operating either at IF or on the in-phase and quadra- 
ture components of bipolar video signals, depending on the radar design. Examples of 
such receiver designs are given in the next paragraph. For the purpose of this analysis 
the hard limiter is assumed to be at IF. The hard limiter at bipolar video can be handled 
as a special case of the IF limiter, wherein the input signals are allowed to be in phase 
(positive) or 180 degrees out of phase (negative) and are not allowed to have phase values 
in between. 

To keep the theoretical model as simple as possible without losing significance it is 
assumed that two or three signals with various relative magnitudes, delays, and RF 
phases are present at the limiter input. It is also assumed #at the noise is negligible at 
the limiter input. The assumption of a large signal-to-noise ratio may not always be 
fulfilled, and in such cases the results of this analysis should not be applied. It is well 
known that the limiter acts like a linear device causing a loss of only 1 to 1.5 dE3 in radar 
sensitivity as long as the signals are sufficiently deep in the noise {2,3). This Study is 
concerned with the case that the limiter output signal can be predicted from the radar 
and the target parameters. In this deterministic case the nonlinearities of the channel 
cause the formation of coherent beat products which may correlate with the transmitted 
radar code at a time shift which does not correspond to the actual location of a physical 
target. In this case a spurious target response is generated. The amplitude of the 
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spurious target cam& be explained as simply an addition of range side lobes, as would 
be indicated if Jioear-matched-filter theory would hold. The false targets may be of the 
same magnitude or stronger than the true targets. This fairly quantitative claim 1 has 
been supported by the results of a computer simulation. 

Complex signal notation is used throughout this analysis. The limiter is mathemati- 
cally described as a device which removes the amplitude variation from the complex 
signal. The limiter output is a complex phase-modulated signal of uniform amplitude. 
It is assumed that the limiter operates distortion-free, i.e., that the phase modulation of 
the input signal arrives undistorted at the output. Much of the approach to the problem 
was influenced by thoughts presented by Nolen in a paper entitled “Effects of Limiting on 
Multiple Signals” (4). To preserve continuity and also since Nolen’s paper is not gensr- 
ally available, some of his results, particularly those pertaining to linear FM, are re- 
viewed in this report. 

It may be argued that the signal-to-noise ratio of the unprocessed signal is ordinar- 
ily very small in typical pulse-compression or phase-coded CW correlation radar sys- 
tems of large correlation gain. Therefore the assumption that the signal-to-noise ratio 
io large would in many cases not be valid and the conclusions from this study would not 
apply. It is true that the signal-to-noise ratio may be exceedingly small for a minimum 
detectable signal. One should keep in mind, however, that large interfering scatterers 
(clutter) may be strong enough to dominate over the noise at the limiter input even if the 
rada, is designed to detect very small signals by virtue of a high correlation gain. 

IMPLEMENTATION EXAMPLES OF HARD-LIMITING 
RECEIVER-PROCESSORS 

Hard limiting may take place at IF or at bipolar video, which may also be considered 
as zero IF. Components of limited dynamic range, like RF amplifiers or mixers, may 
act very much like hard limiters as soon as they become saturated by large signals. The 
IF limiter may be considered as a device which ideally would preserve the phase and de- 
stroy the amplitude modulation of a signal. If the input signal is mathematically~de- ” 
scribed by a complex vector of variable amplitude and variable rotation rate; then the 
output signal would be given by a constant-amplitude vector which points at any given 
moment in the same direction as the input vector. The output vector may be assumed to 
have unit amplitude all the time. To practically implement a hard-limiting device one 
may use amplifier chains whose gain is controlled through a feedback loop in such a 
fashion that it is inversely proportional to the input signal amplitude. At the output Of 
the amplifier chain one would observe a phase-modulated sinusoidal signal with constant 
amplitude as long as the feedback loop is fast enough to respond to changes of the input 
amphtude. A probably less troublesome way to achieve hard limiting is to use the cutoff 
characteristics of suitable nonlinear elements like transistors or diodes, after the input 
signal has been sufficiently preamplified. 

Figure 1 is a simplified diagram of a linear FM pulse-compression receiver. The 
RF signal coming from the duplexer is preamplified, heterodyned to a conveniently se- 
lected IF, passed through a hard limiter and a weighting filter, pulse conipressed in an 
ultrasonic dispersive delay line, detected, and video amplified for display. The wsight- 
ing filter may serve a dual purpose in this case. It may be used to reduce the range side 
lobes of the compressed radar signal and to eliminate higher harmonics which may be 
generated by the diode limiter. Io other words it smooths off the corners of the signal 
commg from the limiter. A typical reason for placing a limiter ahead of the pulse- 
compression device is to normalize the noise power so that it is possible to set, after 
pulse compression and rectification, a detection threshold at a computed level to achieve 
a constant false alarm rate, or CFAR, no matter how strong the noise or interference is 



. . 

~~~~~~~~~~~~~~~~~ ~gif-jt$jg mo,3nn; 

FROM 
LOCAL 

OsclLLniOR 

Fig. 1 - Typical linear FM pulse-compression receiver 

before lim iting. The dynamic range of the radar signal becomes increased through pulse 
compression by as much as its correlation gain. Limiting may also be used to keep the 
dynamic range of the processed signal between convenient boundaries. Another reason 
for lim iting may be that it is simpler or cheaper to use components with a relatively 
small dynamic range and that any large dynamic range after pulse compression would 
not be needed anyway. 

Figure 2 shows a commonly implemented layout for a digital correlator using binary 
shift registers as memory elements and operating on coherently detected, so called bi- 
polar video signals, the in-phase or I-signal and the quadrature or Q-signal. To reduce 
equipment complexity one may omit the Q-signal channel. One loses on that case, how- 
ever, on the average, 3 dB in radar sensitivity. This type of correlator is frequently 
used to process pseudo-randomly zero-pi-phase-coded radar sign&. One of its ad- 
vantages is its flexibility, since the code memory may contain virtually any sequence of 
plus and m inus bits. The only information that is recorded in the shift registers about 
the radar signals is the polarity of the bipolar video signals at the instant of sampling. 
The value of its amplitude is disregarded. The output signals are therefore the same as 
if hard Limiting had taken place in the video amplifiers between the coherent detector 
and the shift registers in Fig. 2. 

GENERAL THEORY OF THE HARD LDATING OF TWO 
INPUT SIGNALS 

The approach in the case of hard lim iting of two input signals is the same as the one 
selected by Nolen (4). In addition to reviewing the cases of two con&ant-frequency 

Fig. 2 - Typical digital matched filter layout 
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sinusoids and two linearly swept FM signals which have been treated by Nolen, a method 
of handling the case of the pseudo-randomly zero-pi-phase-coded signals by essentialiy 
the same technique will be shown. 

Two signals at the lim iter input may be described mathematically as the summation 
of two complex vectors. Through separating out a factor exp ( j2nfot), where f, may 
be called the carrier frequency, one displays only the variations of the complex vectors 
with respect to an average position or with respect to a reference vector. In Fig. 3 there 
is shown as an example two superimposed signal-; ot different magnitudes. 

I 

IMAGVNRY AX,!3 

L-l-74 

VECTOR 2 ROTeiTlNO tlRO”ND THE - , ENOPOlhT OF “E‘TOR 1 
8 %  ,& ‘++ 

\AT~,~~EF~~~~~~~~~O”~~~~ 

*i+ I+ ’ @ ’ 4 J * $ ,d+ ,!. \ /. a? 9‘ ./ 

RELX Lvw3 

. 

Fig. 3 - Phasor diagram illustrating 
lim iter operation in the complex plane 

The signal with the larger amplitude will be arbitrarily designated signal 1. If the 
vectors represent two sine waves of constant but different frequencies, with f, being the 
frequency of sine wave 1, vector 1 may be considered to be fixed and vector 2 to be ro- 
tating with the difference frequency. The true (real) electrical signal may be visualized 
as the projection on the real axis of the complex vector summation rotated around the 
origin at the rate f,. 

The heavily drawn vector in Fig. 3 represents symbolically the lim iter output signal. 
Its endpoint always falls on the unit circle around the origin, and it is aligned in parallel 
with the complex vector resultant from the linear combination of the input signals. 

To solve the problem one has to represent the lim iter output signal as a function of 
the phase difference of the input signals with the ratio of the small signal amplitude to 
the large signal amplitude as a parameter. The evolving nonlinear expression is too 
complicated to be directiy useful, however. Developing the relation between the output 
signal and the phase change of the input signals in a Fourier series permits a much more 
useful functional presentation of the output signal in the fol m  of superimposed coherent 
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phase-modulated signals with amplitudes that can be calculated essentially through eval- 
nation of Fourier coefficients. 

Let it be assumed that the limiter input signals have the constant amplitudes A, and 
A, and the variable phases &( t) and 9,(f), where t is the time. The input signal sin 
which is the sum of the two signals would exhibit both amplitude and phase changes as a 
function of time. By convention the amplitude A, shall be no larger than 4,. One can 
then define the small signal to large signal amplitude ratio a, which would never be 
larger than 1: 

The input signal may then be expressed as 

Sin : *, e 
j&(t) + A, ej+,(t) 

_ AD ejv;o(t) 1 + il ejl+,(t)-rill(f)lj 
i 

= A, e jWc) R ej,c~) @I 

In the last iine of this formula, R represents the length of the resultant vector described 
by the terms between braces on the second line, and a: represents its phase. Reference 
is made to Fig. 4 to explain the relationship. To the end of a unit vector parallel to the 
real axis is attached a smaller vector of length rl and at an angle 

O(t) 7 4,(r) - 9,(r) w 

1 
lMaG,NnRI AXE 

Fig. 4 - Phasor relationships 
in the complex plane 
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The action of the ideal lim iting device is to replace the time-variable amplitude of 
the signal by a unit amplitude and to leave its phase untouched. This may be mathemati- 
tally accomplished by a simple omission of the factors A, and R in Eq. (2). The lim iter 
output hence is given by 

Sout = e j[&dt)+a(t)l (4) 

The function (L depends on the phase difference 8, which in turn is a function of t 
From the geometry depicted in Fig. 4 or through evaluation of the identity 

one obtains 

R .ia(a) = 1 + a .j@  , (5) 

a = tan-l 
a sin 0 

1 + a cos a 

A plot of [I as a function of B and with the parameter a ranging from 0 to 1 in steps of 
0.2 is pictured in Fig. 5. If a = 0, then a is identically equal to 0. For small values of 
a, say for a = 0.2 the function resembles a sine wave. For a = 1, a is a linear saw- 
tooth function connecting from a = -90 degrees to +90 degrees and with the discontinuity 
at a = +180 degrees. For values of a in the range between 0.2 and 1 the function OL (0) 
resembles a distorted sine wave. 

ALPHA NEGREES) 

Fig. 5 - Relation behveen the phase of the sum signal and the 
phase difference of the component signals 

The phase difference 0 may change according to a pseudo-random sequence as a 
function of t, 01‘ it may be some other very complicated sequence. Hence the nonlinear 
expression which one obtains for the output signal through combining Eqs. (4) and (6), 
namely, 

SO”t = exp j 
[ 
+o,(t) + tan-’ 

a sin O(t) 
1 I + a cos a(t) ’ 

does not directly indicate which signal components are present in aout. In particular it 
does not show how strongly the original signals are present and whether and to what 
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extent new signals are generated. It is a fortunate circumstance that the Fourier series 
development of Eq. (7) leads to a summation whose terms may be identified in several 
cases of practical importance with images of the input signals and with newly generated 
signals. Since a is a periodic function of B with the period zn, one may use the devel- 
opment 

&a(B) = exp 
i 
j tan-1 a sin * 

I f a CDS 6 1 

c,(a) .j** @I 

This formula expresses an identity except at those points where the function on the left 
side has a discontilluity. A finite number of summation terms may provide a very good 
approximation except in the vicinity of d&continuities. It may be remarked that Eq. (81 
does not represent a spectral decomposition of the limiter output but rather a series ex- 
pansion for a nonlinear relationship. 

All coefficients c,, (a) are real, since a is an odd function of B . The proof is as 
follows: As a consequence of the relationship .ja(-@) = [eja@)]* I where the asterisk 
indicates complex conjugate, one may equate E C,(a) e-j’@ and [XX C,( a) &e]* . Hence 
Cn( a) = Pn( a) ; i.e., the coefficients C, are real. In the general case the coefficients C, 
and C-, will not be the same, however. 

Iiolen has shown how the coefficients C, may be obtained by collection of terms 
from an infinite product of infinite series in powers of exp ( j B ). it is possible to calcu- 
late the C, values through numerical integration methods, which may perhaps be more 
easily adapted to automatic computer evaluation. The coefficients may be obtained in the 
usual way through multiplication of Eq. (8) with exp (-ime ) and integration over B : 

tn tm 

=I 2 
c,(q .jn@ .-jmfJ de 

-n n=-m 

I 

tn 
C,(a) = L & Ia(B )-4 da 

27r _n 

This integral may be decomposed into a real and an imaginary part: 

I 

+7, 
1 

!z 
cos [G(6) - n6] dfJ + j & sin [a(6) - ng] d$ 

-I/ 
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The second integral is equal to 0, since (I is an odd function of B By the same token 
the remaining integral taken from B = -v to B = +n is equal to twice the integral taken 
from D = 0 to .9 = n: 

I 

t,, 
C” = L 

2n .~ 
cos [a(O) -nOI do 

= ‘I 

n 

7r cos [a(s) - ml dQ 
0 

Inserting Eq. (6) for a as a function of 0 leads to the full expression for the C? values: 

C” =; a sin Q 
1 + a cos * 

Although this integral cannot be evaluated in closed form for any arbitrary valwof the sig- 
nal amplitude ratio a, it can be integrated in the special case a = 1. In this ca6e one,, 
obtains 

, 

a(e) = tan-’ sin Q _ tan-~ 
2 sin $ cos $ 

1 + cos 0 2 cos2 a 2 

= tan-’ 
sin $ 
-: B 
C"S$ 

2 (14) 

This is the equation for the straight line which appears in Fig. 5 if the parameter a is 
equal to 1. Inserting Eq. (14) into Eq. (12) leads to 

C”(l) = ; jy ,,(+ - n9) do = &$L$ 

Also if a = 0, i.e., if the smaller signal disappears entirely, a trivial solution exists. In 
that cause LI is identically equal to 0 and one obtains 

C”(0) = ; 
I 

37 
cos nod@ = 1, if n= 0, 

0 
= 0, for all other n values (16) 

The general shape of the curves in Fig. 5 suggests that a sine function might be a reason- 
ably good approximation for (L (e) as long as a is small enough. Analytically one may 
derive from Eq. (6) that a good approximation is 

a = a sin Q , (17) 

for small values of a. Inserting this approximation into the integral for C, leads to 

cm (a sin O-n*) do (18) 
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This is an integral representation of a Bessel function of the first kind of the order n and 
with the argument a (Ref. 5). 

A good approximation to C, and C_, for sufficiently small values of a is therefore 
C, = J,(a) and C-, : J-*(a). From the first term of the McLaurin series for J (x) one 
obtains the approximate relationships 

C -,=-a,2 and C,=a,‘2, if a C< I 091 

It would be erroneous, however, to regard Eq. (18) as an approximation for the higher 
order coefficients C,. The higher order coefficient& C, depend very critically on the 
higher order terms in the development of LI as a function of B, and exactly those have 
been neglected in the approximation given as Eq. (17). A valid approximation may be ex- 
pressed as a summation of products of Bessel functions (44). 

The approximate expression given as Eq. (19) along with the special result given as 
Eq. (15) provides some insight into the general behavior of the Fourier coefficients C, 
as functions of a. A numerical method based on a fast Fourier transform computer 
program has been used to obtain numeric;rl answers for a set of different parameters. 
The computer program and the methods by which it was checked are explained in the Ap- 
pendix of this report. The results are presented as a set of curves in Fig. 6 and in the 
form of line spectra in Fig. 7. Figure ? also exhibits digital printouts for the C, values. 
Ths following se&ion of this report will illuminate the physical significance of the Fourier 
coefficients C, in a special case. 

Fig. 6 -The Fourier coefficients C, as functions of the eig- 
nal intensity ratio a (labeled A by the computer) and of the 
order n (labeled N) ranging behveen -4 and 5 
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Fig. 7(i) - Spectral line presentation of the Fourier coefficients C, 
with the order n behveen -14 and 15 and strength above -50 &  

An expression for the lim iter output signal which will later prove to be quite useful 
will be derived. The combination of Eqs. (3), (4), and (8) results in 

So.t(t) = yJ cn e 
i[+,(t)-(n-l)+,(t)j w 

n=-m 

where the coefficients C, are the Fourier coefficients which have been discussed in this 
section. 

LIMITING OF A PAIR OF CONSTANT-FREQUENCY CW SINUSOIDS 

The phases of two input signals that are constant-frequency CW sinusoids can be 
expressed through hvo linear functions of time: 

&(f) x 2nfot and 4,(t) : 2nf1t i- 'b10 , (21) 

where f, and f, are the constant frequencies of the sinusoids, C/),0 is the phase shift 
which exists at the moment t = 0, and the small to larger signal amplitude ratio is 
given by the parameter .7 which has been defined in Eq. (1). 

Insertion of Eq. (21) into Eq. (20) permits one to write an expression for the lim iter 
output: 

S,,t(‘) = r c,, e 
j(Zn[f,r+n(f,-~,)r]+~,~,“) 

(22) 
n=-m 

This is an expression for a linear superposition of constant-frequency sinusoids, consist- 
ing of frequency I, with amplitude C,(a), frequency f 1 with amplitude C1( R), and side- 
bands arranged on both sides of the pair of input frequencies at regular intervals deter- 
m ined by the frequency difference f, f. and with amplitudes tapering off and given by 


